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Abstract

While probabilistic formulae estimating triplet
invariants in non-centrosymmetric dispersive struc-
tures are available, equivalent distributions in cen-
trosymmetric dispersive structures are completely
unknown. Filling this gap is the main aim of this
paper. Some recipes for the use of centrosymmetrical
triplets in phasing procedures are also given.

Notation

N number of atoms in the cell.

f=f'+if" general expression forthe atomic scatter-
ing factor. .

F,= Ap+iB,=|Fy| ¢ structure factor with index
h: |F,| is its modulus, ¢y, its phase.

1. Introduction

Probabilistic treatment of the anomalous-dispersion
effect in phasing procedures [see Srinivasan &
Parthasarathy (1976) and literature there quoted] is
more important in non-centrosymmetric than in cen-
trosymmetric space groups. Accordingly approaches
estimating two-phase and three-phase structure
invariants are always described in P1 (Heinerman,
Krabbendam, Kroon & Spek, 1978; Hauptman, 1982;
Giacovazzo, 1983).
While in P1

N
Aw= Y (f] cos 2mhr;—f} sin 27hr;)
Jj=1
N
B,= Y (f]sin2whr;+f cos 2arhr;),
j=1
in P1
N/2
An=2 Y f]cos2mhr;
j=1

N/2
B,=2 Y f} cos2whr,
j=1
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so that F}, = F_, always. It may therefore be expected
that probabilistic formulae for centrosymmetric space
groups will be formally quite different from the corre-
sponding non-centrosymmetric ones. Thus it is of
non-negligible interest to derive probabilistic for-
mulae for the estimation of the structure invariants
in centrosymmetric space groups. Suitably general-
ized, these formulae may be used in non-centrosym-
metric groups for the estimation of two-phase and
three-phase structure invariants constituted by sym-
metry-restricted phases.

In centrosymmetric crystals the distribution
P(A;, B,) when dispersive atoms are present has been
determined by Wilson (1980); the conditional distri-
bution P(®,||F,|) for the two-phase invariant &, =
¢n+ @_p has been provided by Giacovazzo (1987). It
is the aim of this paper to develop probabilistic for-
mulae for triplet invariants in centrosymmetric space
groups and suggest how they may be used in practical
procedures for phase solution.

2. The joint probability distribution function

P(E,, E,,E,,,) in P1
Since F,= F_,, probabilistic formulae for triplet
invariants may be derived via the joint probability
distribution P(E,, Ey, E,.y). Here we introduce the
carrying variables u;, v;, i =1, 2, 3 associated with A;
and B;, i=1, 2, 3 respectively, and calculate the
characteristic ~ function  C(u,, u,, us, vy, v;, ;)
retaining terms up to order 1/v N. Its Fourier trans-
form gives the required joint probability distribution
function

P(Al’ AZ, A35 Bl’ BZ’ B3)
+00 +00

=1/Q2m)° | -+ [ exp[—i(u,A,+ 1A,

o “o
+u3A;+ v, B+ v,B,+ 13 B;)]

x exp {—3{ay,ui+ anul+ asui+ Bol

+ B3+ Bv3+ 204Uy v + 20,551, 0, + 23643 05]
— i ayp3u Uyts + a6t U3+ 35U D U5

Tt @340 Usliy + @y56U VU3 Qg Uy Up Vs

T Q3450 U3+ @450 0,031} duy - - - dos,
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where

a, = Zlfj’z(h), Q= Elffz(k), Q33 = Elfj,z(}H- k),

S 2
— "
B - jzl i

au= L 0f7, 0= 5 £,
au= T HOHRFL = T SO0+,
ae= X OGS, aws= T LOST0R),
asa= L A0S0, = ¥ L0

N
Q345 = Z f}‘”z j'(h+k),

Jj=1

Q46 = ;] fjllzfj’(k),

A
asse= 2 fi"
j=1

According to the above definitions we do not
assume identical unitary scattering curves for the
various atoms.

After lengthy calculation the following joint proba-
bility distribution (expressed in terms of moduli and
phases) is obtained:

P(IF,‘, |F2|, |F3|, @1, P2, P3)
= 1/(277)3“:1Fstl/(Yl')’z')’s)l/Z

|F1|2 Btamn IFZIZ B+as
Xexpy — -
2 2y, 2 2y,
FP(B+ F,f
_| 3| (B ‘133)+| i X, cos (2¢, — x;)

2 2y 2y,

|Fl

+
2

2 IF3|2

X, c08 (20, — x3) +—— X5 ¢0s (203 — X3)

Y2 AT

LRFF|
Y17Y273

+ D126 €OS @) COS @ 5in @3

[ P123 cos ¢, cos @, cos @5

+ p135 COS @, sin ¢, COS @3
+ P1ss COS @) Sin @, sin @3
+ P34 Sin @ COS @, COS @3
+ Paae Sin @, COS @, sin @3

+ P35 sin @, sin @, €os ¢;

+ pase Sin @, sin @, sin <P3]}, (N
where
"= (ﬁan - 0%4),

¥2=(Bay,— a%s),
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‘)’3’—'(.30’33‘“1%6),

X, =[ian—B)+aild"?
x,=tan"' [2a,4, (a;; - B)],
X, =[Ha— B)*+ais]"?,
x;=tan"' [2ays, (@~ B)],
X3=[%(a33—ﬁ)2+a§6]1/2,
x;=tan"' [2as6, (a33— B)].

The two parameters of tan~' are proportional to

sin x; and cos x; respectively. Furthermore,

Pi23= [B3a,23 - 32(036‘1126'*‘ QpsQy3s T A14Q234)
+ B 140360246 X 14025345+ Q25360 156)
— 0405036 Qls6],

P126= [ﬁz(analzs_a36a123)+ﬂ(014‘1360‘234
— 04033046 — Qo5 Q330 56+ Qs Q36 35)

T 14005330456 — Q14025036 345],

Pi3s= [ﬁz(azzans = 0500133) T B @4Qr5 @34
+ @5 360126 — X2 U360 56— X4 Q25Q345)

F 014052 Q360456 — A 14025036046 ],

Piss = [B(anas;a s — apnoyoss— Q5033026
+ @y503600123) — @14@220330456
T 0400360345+ QA5 A330046
— Q14025036 34],

D234 = [B*(ay 0530~ @140123) + B 140362126
= 010360006~ Q1 Q25 Q3as + Q40050 435)

t 0y 050360456 — X4 Q250360 56,

Pass =[B(anas3az6— Q1 X36Q3234 — X 14033026
+a4@360123) T @14 Q25 Q33Q 56— X4 Q25 X36 Q35
=0 Qs 033056t O A5 36 ass],

Paas = [Ba14025@ 123 — @1402 0135~ @y 0500234
0@ Q345) T Q4@ Q360 56— X425 X361 26
QX U3 0ase T 0y Qa3 lagg ),

Pase = [ @11@20330456 = @11 Q50360345
0 Q50330046 T Oy Qa5 036034
= 00330 56T Q4000360 35

T @4 @p50330056 — Q1405360 23]

If only terms up to order 1/(N)® are included then
(1) reduces to the product of the three distributions
P(|F), ¢:), i=1,2,3, provided by Wilson (1980).
From (1) the following conditional probability
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distribution is obtained:
P(e¢y, @2, ‘P3|R1, R;, R;)

1 = [ X
=—exp {% Y [—JZ,. R? cos (2¢; —x,~):|
L i=1 Ly
(X, 22"

Y17273
X [ p123 cos @, cos @, cos ¢s

+ P12 COS @) COS @, SIN @5

+ R,R,R,

+ P135 €OS @, Sin @, €S @3
+ P1ss COS @, Sin @, sin @,
+ 234 Sin @ COS @, COS @3
+ Pase SiN @, COS @, sin @

+ P3as sin @, sin @, €Os @3
+ Pase Sin @, sin @, sin ‘Ps]}, (2)

where ¥, = (a;+ B) and R, =|F,|/X}? are the normal-
ized moduli.

3. The estimation of ¢; given other phases
and magnitudes

From (2) the conditional distribution (3) is readily
derived:

P(‘Pll‘Pz, ®3, Ry, Ry, R;)
=(1/L) exp {}(X; X,/ 71) R cos (2¢, — x,)
I, X 290 717275
X Xo1 Ry RyR; cos (¢, — xo1)}, 3)
where
Xo1 ={[ P123 €Os @5 cOS @3+ P26 COs @, sin @3
+ P35 sin @; €Os @3+ pyse sin @, sin @)
+[ P234 €08 @5 COS 3+ Prsg €OS @, sin @5
+ P3as Sin @5 COS @3+ puse sin @, sin 4’3]2}1/2
=(T5+ B5)"?
and
Xo1 =tan"' [Ty, Bo,].

Equation (3) is the product of two exponential func-
tions: the first takes its maximum at n7+x,/2, the
second at x,,. For proteins, (a) x,/2 represents a
value of a few degrees, while x;, often lies around
+m/2; (b) 3Xi/7v, is usually much larger than
[, Y,Y:)"%/ 7172751 X0 - Thus (3) is often bimodal
with mode close to nm+x,/2: the estimate will be
near 0 or near 7 according to whether x,, is in the
quadrants (1, 4) or in the quadrants (2, 3).
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For small structures or for very large values of
R,R;R;, (a) x,/2 may be significantly large; (b)
(X% 23)1/2/717273]X01R1R2R3 is not negligible
compared with 3(X; ¥,/ ¥,) R}. Then the modes of (3)
are more evenly dispersed in the interval (0, 27).

In order to check (3) 3328 structure factors up to
2 A resolution have been calculated using the pre-
sumed known coordinates of ferredoxin from Pep-
tococcus aerogenes (Adman, Sieker & Jensen, 1973)
which crystallizes in P2,2,2, with M, =6000. The
eight iron atoms in the molecule were assumed to be
anomalous scatterers with f'=—1-18 and f”=3-20.
In Fig. 1 a typical plot of (3) is shown: some par-
ameters of the distribution are also given.

If several pairs of phases (¢, ¢nx,) are known
then (3) may be generalized as

P(‘PllRl, {®2, 3, Ry,R;})

1 1X
=7 exp {5 —;Z—' R%cos 2¢,—x,;)
1

1/2

+L [——(Z‘YZ;Z;) XoiRiRoR;

J 1Y273

X cos (¢, _xm)] } (4)

j

Phase estimates for (3) and (4) may be obtained
by numerical methods: in particular the expected
value ¢, is given by

(p)=tan™'[S, C]
27 2m
S= g sin ¢, P(¢,)dp,, C= (I) cos ¢, P(¢,) dey,

to which the so-called circular variance may be associ-
ated, given by

V=1-R,

where R =(S%+ C%)"?,
An appropriate transformation of the circular
variance is
S={-2In(1-V)}/?

which gives a measure somewhat analogous to the
ordinary standard deviation on the line.

P

R=2764
R;=2.591
R;=2542
xn=10°

Xo=109°
Ti=124
T.=3

J

w2 M 3m/2 27

Fig. 1. Plot of equation (3) in the interval (0, 27). The values of

Tl =3X, 2./ v, and of T,= [(Z, Zz 23)]/2/71727’3]){01 are also
given.
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Table 1. Of 68 centrosymmetric reflexions, the 34 with
the concentration parameter o (according to non-
centrosymmetric formulae) larger than 1-0 are printed

¢, and ¢, are true and calculated phase values.
*** labels wrong indications.

h k ! @, 'R a
10 0 12 185-0 185-2 17-05
2 0 2 183-0 175-5 8-97
0 18 4 1-0 5-0 7-55
11 0 2 180-0 4-5* 5-82
8 0 12 184-0 184-2 4-53
0 12 12 6-0 4-4 3-90
0 6 17 183-0 1849 3-79
11 0 4 181-0 185-2 3-54
0 2 4 4-0 35 3-00
0 4 6 4-0 183-4* 2:99
0 10 6 358-0 185-0* 2-37
0 18 2 181-0 185-4 2:23
10 14 0 80 5-3 2-13
0 14 12 189-0 184-0 1-52
2 7 0 1-0 3-8 1-24
8 1 0 180-0 182-7 1-18
0 14 3 181-0 2:2% 1-09
0 16 10 186-0 186-3 15-49
0 14 2 1-0 6-9 7-74
7 0 14 3-0 4.2 6-16
0 14 4 4-0 4-8 5-45
6 15 0 1-0 4-8 3-90
0 16 1 356-0 3-8 3-86
0 2 3 0-0 1-5 37
6 1 0 1-0 2-7 3-48
6 0 18 184-0 184-7 299
2 0 4 184-0 1829 2-50
8 16 0 0-0 51 2-29
0 14 10 4-0 4-8 2-20
0 18 0 184-0 1719 2-11
0 2 18 181:0 6-0* 1-44
0 8 16 181-0 20-8* 1-:20
8 0 16 2-0 4-8 1-16
0 2 19 180-0 184:7 1-07

4. Concluding remarks

The limits of (3) and (4) may be described as: (a)
they hold in P1: in higher-symmetry space groups
they hold only if restricted phases of type (0, 7) are
involved; (b) for restricted phases of different type
the values of x;, and x,, have to be modified in
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accordance with space-group symmetry [see equation
(10) in Giacovazzo (1987) for the generalized value
of x,].

Equations (3) and (4) are formally quite different
from equivalent formulae working in non-centrosym-
metrical space groups (Hauptman, 1982; Giacovazzo,
1983). The question arises whether: (a) information
contained in centrosymmetric triplets is sufficiently
large to be useful in practice for protein structure
determination; (b) non-centrosymmetric formulae
are sufficiently accurate to be used also for the estima-
tion of centrosymmetric triplets.

In order to answer both questions 68 reflexions
with restricted phase of type (0, ) (from ferredoxin
calculated data) have been estimated according to
(4) by using 290 centrosymmetric triplets only. The
same reflexions were also estimated according to non-
centrosymmetric formulae. The outcome was practi-
cally identical for both types of formulae and is shown
in Table 1. This table suggests that information con-
tained in centrosymmetric triplets in dispersive struc-
tures is not negligible, and that non-centrosymmetric
formulae can be used for estimating centrosymmetric
as well as non-centrosymmetric triplets. Tests on real
diffraction data have not been attempted; it is easy
to foresee a reduced efficiency of the formulae accord-
ing to the average error magnitude in the experimental
data.
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Abstract

The probabilistic procedure described by Main
[In Crystallographic Computing Techniques (1976),
edited by F. R. Ahmed, pp. 97-105. Copenhagen:
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Munksgaard] has been reconsidered. In polar space
groups some primitive random variables (atomic
positions or shift vectors for molecular fragments)
may be conveniently restricted to regions which are
smaller than a unit cell. This introduces two new
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